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Scattering Matrices of Junction Circulator with

Chebyshev Characteristics

JOSEPH HELSZAJN, MEMBER, IEEE

Absfrac+The purpose of this paper is to derive the scattering
matrix of junction circulators with Chebyshev characteristics. This

is done by forming the overall eigenvalues of the circulator one at

a time in terms of the -4BCD matrix of the matching network and
the initial set of the junction eigenvalues. This paper deals both with
the case where the frequency variation of the in-phase eigennetwork
at the gyrator terminals is neglected compared to that of the coun-
terrotating ones, end with the case where it is included. It is found
that the former approach is in excellent agreement with the results
obtained by assuming a l-port model for the circulator. The influence
of tMs eigennetwork on the overall frequency response is studied

separately by combining the electromagnetic and network problems
in the case of the stripline circulator.

INTRODUCTION

THE THEORY of wide-band circulators using external

matching networks usually starts by assuming that

the equivalent circuit of the device is a l-port network
[1]–[8]. This l-port circuit consists of a shunt conductance

in parallel with either a lumped or distributed resonator.

It assumes that the frequency behavior of the in-phase

eigennetwork at the gyrator terminals may be omitted

compared with that of the two counterrotating ones. The

bandwidth over which this approximation applies has been

discussed in [8] in terms of the resonant frequencies of the

counterrotating eigennetworks, but a fuller investigation

of the omission of the frequency variation of the in-phase
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eigennetwork on the quality of this equivalent circuit

appears desirable.

The most general representation of the 3-port circulator

is in terms of the eigenvalues of the scattering matrix [9].

The eigenvalues of this matrix are reflection coefficients

associated with the different ways of exciting the junction.

The entries of the scattering matrix are constructed by

taking linear combinations of these eigenvalues. This

method therefore yields not only the reflection coefficient

at the input port but also the transmission coefficients of

the junction. The approach is quite general and applies

to the m-port junction also. It starts by representing the

matching network at each port by its ABCD matrix. The

eigenvalues at the input terminals of the junction are then

obtained one at a time in terms of the ABCD parameters

and the initial set of eigenvalues at the gyrator terminals.
In this paper the boundary condition for circulators

with Chebyshev frequency characteristics is fist estab-

lished at the terminals of the matching network in terms

of the eigenvalues of the scattering matrix by omitting the

frequency variation of the in-phase eigennetwork at the

gyrator terminals and subsequently reintroducing it to

study its influence on the overall frequency response. It

is found that the former results are in excellent agreement

with those obtained by connecting the matching network

directly to the l-port circuit [8].

The influence of the in-phase eigenvalue on the overall

frequency response of the circulator is studied separately

in the case of the sttipline circulator by combining the
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electromagnetic and network problems. This result in-

dicates that the in-phase eigennetwork cannot be neglected

for high-quality communication circulators. However,

the l-port results can be used, provided the in-phase

eigennetwork is tuned by an additional independent

variable such as a thin metal post at the center of the

junction or thin metal posts at the input terminals of

the quarter-wave transformers.

EIGENVALUES OF THE SCATTERING MATRIX

The entries of the scattering matrix of junctions are

usually directly constructed in terms of their eigenvalues.

In the case of the 3-port junction depicted in Fig. 1, in

terms of ideal 2-port gyrators of characteristic admittance

Y, [10], the following standard equations apply [9]:

Sll = S’(J+ S+l + 8–1

3
(1)

S* = SO+ S+l exp (j2r/3). + S-l exp ( –j2m/3)

3
(2)

A% =
so + S+l exp ( –j2m/3) + s–l exp (j2m/3)

3
(3)

The eigenvalues of the scattering matrix are the reflec-

tion coefficients associated with each possible way of excit-

ing the junction

so = exp ( —j2@o) (4)

s+l = exp [–j2 (01 + 6+1 + T/2)] (5)

s-1 = exp [–j2(el + e–l + ~/2)]. (6)

The angles of the eigenvalues are defined below. The

normalized admittance eigenvalues are related to those

2

I

1 t)

-3

Fig. 1. Schematic of ideal 3-port junction circulator in terms of
2-port gyrators.
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of the scattering matrix by

1–s0
—=jtaneo

‘o = r+ so
(7)

1 ‘al = j tan ( el + e+l + ~/2)
‘+1 = i-+ S+l

(8)

The equivalent circuits of the admittance eigenvalues

Y+l and Y–I are short-circuited transmission lines of

electrical length Eh + ekl as shown in Fig. 2. For a

3-port circulator for which SE = – 1, the equivalent

circuit for the admittance eigenvalue yO is a quarter-

wave-long open-circuited transmission line of length %

The boundary conditions given by (7) – (9) are in

terms of transmission lines with the same characteristic

impedance as the input lines. One suitable approximation

in terms of the magnetic and frequency variables based

on uniform transmission lines is

y. =: jy{ tan e. (lo)

Y+I =’ –jYI cot a + jy+l’ tan e+l (11)

W–l = –jyl cot el + jy–+ tan e–l

=’ –jth cot el – jy+i tan e+l. (12)

The form of these equations is obtained by forming the

input admittance of the networks, which will be described,

in terms of ABCD matrices.

The equivalent circuit for the admittance y+l is a trans-

mission line of admittance y+l’ and electrical length e+l

in cascade with a short-circuited transmission line of

admittance yl of electrical length el. A similar statement

applies to the admittance y-l. The equivalent circuit for

the admittance eigenvalue yo remains unchanged since it

is unaffected by the applied direct magnetic field used to

bias the device. It is observed in passing that the angles

in ( 10)–( 12) are related to those in (7) –(9) through

appropriate transformations.

‘l=--m=l
‘4

Fig. 2. Eigennetworks of 3-port junction circulator.
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EIGENVALUES OF AUGMENTED
SCATTERING MATRIX

If matching networks are now connected to each of the

ports of the junction, one obtains the schematic diagram

in Fig. 3. The eigennetworks for this circuit are shown in

Fig. 4. The entries of the scattering matrix at the new

terminals am now given by

rll =
70 + 7+1 + ‘Y-1

3
(13)

ru = TO+7+1 exp (~2r/3) + 7-1 exp ( –~2m/3)

3“
(14)

The eigenvalues at the input terminals of the ABCD

networks are given by straightforward calculation

70 = exp ( – j2#o) (16)

ImA B“

I
c D

Fig. & Schematic of 3-po~e/~;t# circulator with matching

I 1

42!-I=J

7+1 = em [–j2(#+I + T/2) ] (17)

‘y-l = exp [–j2(#-l + 7r/2) J (18)

where

j tan (+.) =
jc + Dyo

A + jByo
(19)

jC + Dy+l
j tan (*+1 + r/2) =

A + jBy+l
(20)

j tan (~_l + 7r/2) =
jC + DW

A + jBy-1”
(21)

It is also observed that each eigenvalue satisfies Y-Y* = 1.

Hence, the new eigenvalues lie on the unit circle also.

For a single q~rter-wave transformer, the ABCD

parameters are

A=cosf3 (22)

sin e
z?=— (23)

yt

C=y, sine (24)

D = Cos e. (25)

The frequency variable EI is

e = *m(l +8) (26)

where

()
26=2=. (27)

@o

At the band edges the frequency variable becomes

()
260=2 = . (28)

@o

The C!hebyshev polynomial passes through zero for n = 2

when [8]

(2)112 cos e = cos e,. (29)

Fig. 5 depicts the frequency response considered in this

text.

CIRCULATION ADJUSTMENT

The design proceeds by having the frequency at which

the reflection coefficient passes through its zeroe and

maxima coincide with those of a Chebyshev polynomial.

When the reflection coefficient passes through zero, the

eigenvalues lie equally spaced on the unit circle

Irl

h

IYI -- -- –– ---––

-1-.707 0 .707 I x

Fig. 5. Chebyshev response o~a;o; 2 quarter-wave coupled circu-
Fig. 4. Eigennetworks of 3-port circulator with matching networks.
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4+1 + T12 = *O+ 7r/3 (30)

*-1 + T/2 = *o - 7/3. (31)

Substituting the last two equations into (19)-(21) gives

j tan y20= -j(D/B) (32)

j tan (+0+ 7r/3) =
jC + Dy+l

A + jlly+i
(33)

j tan (YO
_ .,3) = jC + Dy_l

A + jl?y-, “
(34)

The simplified form for yO comes about because y. = w

for a circulator for which SO= – 1.

Expanding the above equations in terms of t = tan XO,

and putting

yM = j(k + p)

gives

t = –D/B (35)

t – 3112 c–xD+#D t– (C–Dx)/@

1 +t(3)11Z = A + MI – MB = 1 + t[(A +Bh)/PDl

(36)
and

t + 3112 C–m–pi) t + (C– Ml)/~B

&t(3) ’12= ~+~+@=l-t[(~+ W)/PD]”

(37)
These equations are consistent provided

CD – AB
yl cot e = B2 + D2

and

AD + BC
(3) 112y+itan (3+, = B~ + D2

(38)

(39)

which must be evaluated at 2112cos 0 = cos eo. These

are the equations previously derived in [8].

To obtain y~ it is necessary to directly evaluate rll at

the center frequency in terms of the original variables.

For g < y? the result is

(3) 1/2y+/ tan e+, = y?[(2 – r)/r]lli. (40)

In terms of the original variables (38) – (40) become

[r/(2 – Y) ]112 – SiIf e

g = [~/(2 – ~) ]’/i COS2e (41)

VI = {g[(2 – r)/r]112}112{g[r/(2 – r) ]112 – 1 } sinz e

(42)

y? = [r/(2 – r) ]Ilzg. (43)

The present results are identical with $hose previously

derived in [8] provided

r w [?’/(2 — T) ]1/2 (44)

which is a good approximation for the values of r usually

encountered in circulator design.

QUARTER-WAVE COUPLED-BELOW-RESONANCE
STRIPLINE CIRCULATOR

The theory developed so far will now be combined with

the electromagnetic problem in the case of the stripline

circulator [1], [3], [11], [13], [14]

–jmY. {JI’(iM) – (K/P) [JI(iiR) /kR]}
‘+1 = 3Yosin*” J,(kR)

(45)

–jrY. {JI’ (kR) + (K/I.L) [J1(M?) /Mll- (46)
‘-L = 3YOsin#” J,(kR)

[1jrY~ Jo’(kR)
yo = ~ Jo(kR) “ (47)

Fig. 6 depicts the preceding eigenadmittances as a func-

tion of kR for a circulator which when magnetized gives

r = 1.07. The phase angles of the eigenreflection coef-

ficients are shown in Fig. 7. These results show that the

equivalent circuits for y+l and y_l are short-circuited radial

)Y.

-90 1//
Fig. 6. Eigenndmittances of stripline circulator with r = 1.07,

280 = 20 percent.

36d,

276.

18 O“-

- (-

2ee

96

Fig. 7. Electrical lengths of eigennetworks for stripline circulator
with r = 1.07, 260 = 20 percent.
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transmission lines, while that of the eigermetwork yO is

an open-circuited transmission line. If it assumed from the

electromagnetic problem, in the usual way, that the

frequency variation of the yO network can be omitted

compared to the Y=l networks as was done in the network

problem, the two are related.

The result is

9 = (3) 1’2y+I’ tan 0+1 =
T Ye

K (48)
(3) ’i2YoMi! sin ~“~

(49)

where it has been assumed that the susceptance slope

parameters for the two equivalent reciprocal circuits are

the same. Here g is the normalized gyrator admittance of

the junction, and b’ is the normalized susceptance slope

parameter of the reciprocal eigennetworks.

The electromagnetic problem that must be satisfied

when the frequency variation of the .s0 eigenvalue is

neglected compared to that of s*1 is therefore, in the case

of a quarter-wave coupled circtiator,

(50)

T Ye K r – sinz 60

(3) ’12YOICRsin +“; = r COS2 (30 “
(51)

The first

K/I.L.

In the

equation determines sin $ and the second gives

preceding equations [13]-[15]

[ (w_’ ’52)Y. = 4 (e,eO/p6po)1/2 in

“’=4(’J~)l’2HEw’53)
w

sin$=% (54)

where W is the width of the stripline, b is the ground-plane

spacing, t is the thickness of the center conductor, and the

other quantities have the usual meanings.
The width of the center conductor is now obtained from

(54), and for a 50-ti line the ground-plane spacing b and

center conductor thickness are obtained from (53) [15].

FREQUENCY VARIATION OF QUARTER-WAVE

COUPLED CIRCULATOR

The assumption used throughout this paper is that the

frequency variation of the so eigenvalue may be omitted

compared to that of the S*l eigenvalues. This assumption

will now be tested in the case of stripline circulators with
2~o = 20 percent, and r = 1.10 and 1.22. The physical

variables sin * and K/p in (45) –(47) are given by (50)

and (51) once the bandwidth and VSWR are stated.

Figs. 8 and 9 give the frequency behavior of the overall

quarter-wave coupled circulator for the ideal and actual

cases. These results have been obtained by assuming that

the center frequency lies midway between the two split

frequencies rather than at iiR = 1.84.

The above results show that although the frequency

variation of the in-phase reflection coefficient is small

compared to that of the counterrotating ones, it cannot be

ignored for devices with relatively wide bands and low

VSWR’S.

FREQUENCY RESPONSE OF QUARTER-WAVE

COUPLED CIRCULATOR WITH

CAPACITIVE TUNING

One way in which the theoretical results can be obtained

in practice is to introduce a thin metal post in the center

of the junction. Equivalently, thin metal posts may be

introduced at the input transformer terminals which is

the normal approach in stripline devices. This last state-

ment comes about because the in-phase eigennetwork is

an open-circuited half-wave resonator which can be tuned

at either input or output terminals.

The ABCD matrix for a single shunt capacitor is

A=l (55)

B=O (56)

20
1

VSWR

1.5

~ ,,U,

~.-

?0
-c+ -0’3 -0.2 -04 6 01 &2 0.3 04

6

(57)

Fig. 8. Frequency response of quarter-wave coupled circulator
with and without third eigennetwork for h = 1.10, 260 = 20
percent,

2“’7
+

VSWR
i

1.5-

ye,m

I.$ia. . -03 -0!2 -0+ h 0:1 0:2 65 ~ 0:4

Fig. 9. Frequency response of quarter-wave coupled circulator
with and without third eigennetwork for r = 1.22, 280 = 20
percent.
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D=l. (58)

Cascading this ABCD network with that for the single I I

’59) El[ IL:
quarter-wave transformer gives the following ABCD

parameters for the overall matching network:

A=cose

sin e
B=— (60) ~w

yt .

Wc
C=y, sine +~cose (61)

COG’sin e
D=cose– ——

Yo y, “
(62)

The arrangement used here is shown in Fig. 10. Figs. 11

and 12 indicate the influence of the capacitor C on the

overall frequency response of the device for r = 1.10,

1.22, and 280 = 20 percent. They show that such a capaci-

tor can indeed be,used to improve the correlation between

the two- and three-eigennetwork models of the stripline

circulator.

FREQUENCY RESPONSE OF A RECIPROCAL

3-PORT JUNCTION

It is also possible to obtain the frequency response of

the reciprocal junction by taking a linear combination of

the eigenreflection coefficients of the junction [12]. The

result is

= 7’0 + % (63)

where

70 = exp ( –j240) (64)

m = exp [–jz(Ih + T/z)] (65)

jC +- Dyo
j tan (T/2 + l.) = A + jByO (66)

jC + Dyl
j tan (~/2 + @ = A + ~ByI . (67)

CONCLUSIONS

This paper has developed a scattering theory for 3-port

junction circulators with Chebyshev characteristics. This

theory allows the influence of the in-phase eigenvalue of

the 3-port circulator on the overall response of the device

to be studied. The main conclusion of the paper is ihat

while the in-phase eigenvalue of the junction may be

omitted for devices with moderate specifications, it cannot

be neglected for high-quality ones. Indeed, it may be

necessary to introduce an additional independent variable

in the form of a variable capacitor at the input terminals

l__-_l Ls..Q

I 1

Fig. 10. Eigennetworks of 3-port circulator with capacitive tuning.

1.4,

VSWR

1.3

1.2.

14.

1.01
-0.3 - d+ -04 0 0.1 0.2 --73

s

Fig. 11. Frequency response of quarter-wave coupled circulator
with capacitive tuning for r = 1.1, 280 = 20 percent.

1.41

‘4rziF-- -01 0 “ 0:1 0:2 , 0!3

Fig. 12. Frequency response of quarter-wave coupled circulator
with capacitive tuning for r = 1.22, 280 = 20 percent.



554

of the junction to

approach described

optimize its electrical length. The

in this paper may also be used to

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1975

investigate the influence of tolerance on the overall per-

formance of stripline circulators.
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